How To Make Jacob More Valuable Than Evil People

Magnetic Field Simulation using FEA

Magnetic Field Simulation using FEA

This notebook simulates the magnetic field distribution using Finite Element Analysis (FEA). The magnetic field is generated by current flowing through a material with a defined relative permeability.

Python Code


import numpy as np

import matplotlib.pyplot as plt

from scipy.constants import mu_0

# Define problem parameters

current_density = 10e3  # Current density (A/m^2)

mu_r = 1000  # Relative permeability of material

num_elements = 100  # Number of elements in the mesh

length = 0.1  # Length of the magnetic material (meters)

# Define the magnetic field calculation using Biot-Savart Law

def calculate_magnetic_field(current_density, mu_r, length):

    mu_eff = mu_0 * mu_r

    B = (mu_eff * current_density) / (2 * np.pi * length)

    return B

# Discretize the domain

x = np.linspace(0, length, num_elements)

B = calculate_magnetic_field(current_density, mu_r, x)

# Plot the magnetic field

plt.figure(figsize=(8, 6))

plt.plot(x, B, label='Magnetic Field B')

plt.xlabel('Position (m)')

plt.ylabel('Magnetic Field (T)')

plt.title('Magnetic Field Distribution along Material')

plt.legend()

plt.grid(True)

plt.show()

# Save the results for use in the combined notebook

np.save('magnetic_field.npy', B)

    

Explanation

This code calculates the magnetic field along a material using the Biot-Savart law. The results are plotted to show the magnetic field distribution and saved for further analysis in subsequent notebooks.

``` ### **2. HTML for Notebook 2: Acoustic Field Simulation using FEA** ```html Acoustic Field Simulation using FEA

Acoustic Field Simulation using FEA

This notebook simulates the acoustic wave propagation in a medium. The wave equation is solved using FEA, and the results are visualized to show the acoustic pressure distribution.

Python Code


import numpy as np

import matplotlib.pyplot as plt

# Define problem parameters

c = 343  # Speed of sound in air (m/s)

frequency = 1000  # Frequency of sound wave (Hz)

wavelength = c / frequency  # Wavelength of sound (meters)

amplitude = 1  # Amplitude of the sound wave (Pa)

num_elements = 100  # Number of elements in the mesh

length = 0.1  # Length of the acoustic domain (meters)

# Define the acoustic wave equation

def calculate_acoustic_wave(amplitude, wavelength, length):

    k = 2 * np.pi / wavelength  # Wave number

    x = np.linspace(0, length, num_elements)

    p = amplitude * np.sin(k * x)

    return x, p

# Discretize the domain

x, p = calculate_acoustic_wave(amplitude, wavelength, length)

# Plot the acoustic pressure field

plt.figure(figsize=(8, 6))

plt.plot(x, p, label='Acoustic Pressure')

plt.xlabel('Position (m)')

plt.ylabel('Pressure (Pa)')

plt.title('Acoustic Pressure Distribution')

plt.legend()

plt.grid(True)

plt.show()

# Save the results for use in the combined notebook

np.save('acoustic_pressure.npy', p)

    

Explanation

This code calculates the acoustic pressure distribution in a medium by solving the wave equation. The results are visualized and saved for further analysis in the combined simulation notebook.

``` ### **3. HTML for Notebook 3: Real-Time Adjustment and Feedback Control** ```html Real-Time Adjustment and Feedback Control

Real-Time Adjustment and Feedback Control

This notebook combines the magnetic and acoustic field simulations and implements a real-time feedback control system using a PID controller to adjust the magnetic and acoustic fields based on sensor input.

Python Code


import numpy as np

import matplotlib.pyplot as plt

# Load the results from previous simulations

B = np.load('magnetic_field.npy')

p = np.load('acoustic_pressure.npy')

# Define the feedback control parameters (PID)

Kp = 0.5

Ki = 0.1

Kd = 0.05

# Set up the PID controller

class PIDController:

    def __init__(self, Kp, Ki, Kd, setpoint):

        self.Kp = Kp

        self.Ki = Ki

        self.Kd = Kd

        self.setpoint = setpoint

        self.previous_error = 0

        self.integral = 0

    def update(self, measured_value):

        error = self.setpoint - measured_value

        self.integral += error

        derivative = error - self.previous_error

        output = self.Kp * error + self.Ki * self.integral + self.Kd * derivative

        self.previous_error = error

        return output

# Define setpoints for magnetic and acoustic fields

magnetic_setpoint = 0.01  # Target magnetic field strength (T)

acoustic_setpoint = 0.5  # Target acoustic pressure (Pa)

# Instantiate PID controllers

magnetic_pid = PIDController(Kp, Ki, Kd, magnetic_setpoint)

acoustic_pid = PIDController(Kp, Ki, Kd, acoustic_setpoint)

# Initialize real-time adjustment

num_steps = 100

adjusted_magnetic_field = np.zeros(num_steps)

adjusted_acoustic_pressure = np.zeros(num_steps)

for i in range(num_steps):

    measured_B = B[i % len(B)]

    measured_p = p[i % len(p)]

    

    # Adjust magnetic field

    magnetic_adjustment = magnetic_pid.update(measured_B)

    adjusted_magnetic_field[i] = measured_B + magnetic_adjustment

    

    # Adjust acoustic pressure

    acoustic_adjustment = acoustic_pid.update(measured_p)

    adjusted_acoustic_pressure[i] = measured_p + acoustic_adjustment

# Plot the adjusted fields over time

plt.figure(figsize=(12, 6))

plt.subplot(2, 1, 1)

plt.plot(adjusted_magnetic_field, label='Adjusted Magnetic Field')

plt.ylabel('Magnetic Field (T)')

plt.title('Real-Time Adjusted Magnetic Field')

plt.legend()

plt.grid(True)

plt.subplot(2, 1, 2)

plt.plot(adjusted_acoustic_pressure, label='Adjusted Acoustic Pressure')

plt.xlabel('Time Step')

plt.ylabel('Acoustic Pressure (Pa)')

plt.title('Real-Time Adjusted Acoustic Pressure')

plt.legend()

plt.grid(True)

plt.tight_layout()

plt.show()

    

Explanation

This code uses a PID controller to adjust the magnetic and acoustic fields in real-time based on sensor input. The adjusted fields are plotted over time to visualize the control system's effectiveness.

``` ### **LaTeX Code for Equations and Explanations (Blogger-Compatible)** ```latex \documentclass{article} \usepackage{amsmath} \usepackage{graphicx} \begin{document} \section*{Magnetic Field Simulation using FEA} This simulation calculates the magnetic field distribution using the Biot-Savart law. The magnetic field \( B \) is generated by current flowing through a material, defined by: \[ B =

Comments

Popular posts from this blog

The End of Modern Slavery and Human Trafficking

Why Has No One Asked Me What Happened…Ever?

A Letter to Every City In America