How To Make Jacob More Valuable Than Evil People
Magnetic Field Simulation using FEA
This notebook simulates the magnetic field distribution using Finite Element Analysis (FEA). The magnetic field is generated by current flowing through a material with a defined relative permeability.
Python Code
import numpy as np import matplotlib.pyplot as plt from scipy.constants import mu_0 # Define problem parameters current_density = 10e3 # Current density (A/m^2) mu_r = 1000 # Relative permeability of material num_elements = 100 # Number of elements in the mesh length = 0.1 # Length of the magnetic material (meters) # Define the magnetic field calculation using Biot-Savart Law def calculate_magnetic_field(current_density, mu_r, length): mu_eff = mu_0 * mu_r B = (mu_eff * current_density) / (2 * np.pi * length) return B # Discretize the domain x = np.linspace(0, length, num_elements) B = calculate_magnetic_field(current_density, mu_r, x) # Plot the magnetic field plt.figure(figsize=(8, 6)) plt.plot(x, B, label='Magnetic Field B') plt.xlabel('Position (m)') plt.ylabel('Magnetic Field (T)') plt.title('Magnetic Field Distribution along Material') plt.legend() plt.grid(True) plt.show() # Save the results for use in the combined notebook np.save('magnetic_field.npy', B)
Explanation
This code calculates the magnetic field along a material using the Biot-Savart law. The results are plotted to show the magnetic field distribution and saved for further analysis in subsequent notebooks.
``` ### **2. HTML for Notebook 2: Acoustic Field Simulation using FEA** ```htmlAcoustic Field Simulation using FEA
This notebook simulates the acoustic wave propagation in a medium. The wave equation is solved using FEA, and the results are visualized to show the acoustic pressure distribution.
Python Code
import numpy as np import matplotlib.pyplot as plt # Define problem parameters c = 343 # Speed of sound in air (m/s) frequency = 1000 # Frequency of sound wave (Hz) wavelength = c / frequency # Wavelength of sound (meters) amplitude = 1 # Amplitude of the sound wave (Pa) num_elements = 100 # Number of elements in the mesh length = 0.1 # Length of the acoustic domain (meters) # Define the acoustic wave equation def calculate_acoustic_wave(amplitude, wavelength, length): k = 2 * np.pi / wavelength # Wave number x = np.linspace(0, length, num_elements) p = amplitude * np.sin(k * x) return x, p # Discretize the domain x, p = calculate_acoustic_wave(amplitude, wavelength, length) # Plot the acoustic pressure field plt.figure(figsize=(8, 6)) plt.plot(x, p, label='Acoustic Pressure') plt.xlabel('Position (m)') plt.ylabel('Pressure (Pa)') plt.title('Acoustic Pressure Distribution') plt.legend() plt.grid(True) plt.show() # Save the results for use in the combined notebook np.save('acoustic_pressure.npy', p)
Explanation
This code calculates the acoustic pressure distribution in a medium by solving the wave equation. The results are visualized and saved for further analysis in the combined simulation notebook.
``` ### **3. HTML for Notebook 3: Real-Time Adjustment and Feedback Control** ```htmlReal-Time Adjustment and Feedback Control
This notebook combines the magnetic and acoustic field simulations and implements a real-time feedback control system using a PID controller to adjust the magnetic and acoustic fields based on sensor input.
Python Code
import numpy as np import matplotlib.pyplot as plt # Load the results from previous simulations B = np.load('magnetic_field.npy') p = np.load('acoustic_pressure.npy') # Define the feedback control parameters (PID) Kp = 0.5 Ki = 0.1 Kd = 0.05 # Set up the PID controller class PIDController: def __init__(self, Kp, Ki, Kd, setpoint): self.Kp = Kp self.Ki = Ki self.Kd = Kd self.setpoint = setpoint self.previous_error = 0 self.integral = 0 def update(self, measured_value): error = self.setpoint - measured_value self.integral += error derivative = error - self.previous_error output = self.Kp * error + self.Ki * self.integral + self.Kd * derivative self.previous_error = error return output # Define setpoints for magnetic and acoustic fields magnetic_setpoint = 0.01 # Target magnetic field strength (T) acoustic_setpoint = 0.5 # Target acoustic pressure (Pa) # Instantiate PID controllers magnetic_pid = PIDController(Kp, Ki, Kd, magnetic_setpoint) acoustic_pid = PIDController(Kp, Ki, Kd, acoustic_setpoint) # Initialize real-time adjustment num_steps = 100 adjusted_magnetic_field = np.zeros(num_steps) adjusted_acoustic_pressure = np.zeros(num_steps) for i in range(num_steps): measured_B = B[i % len(B)] measured_p = p[i % len(p)] # Adjust magnetic field magnetic_adjustment = magnetic_pid.update(measured_B) adjusted_magnetic_field[i] = measured_B + magnetic_adjustment # Adjust acoustic pressure acoustic_adjustment = acoustic_pid.update(measured_p) adjusted_acoustic_pressure[i] = measured_p + acoustic_adjustment # Plot the adjusted fields over time plt.figure(figsize=(12, 6)) plt.subplot(2, 1, 1) plt.plot(adjusted_magnetic_field, label='Adjusted Magnetic Field') plt.ylabel('Magnetic Field (T)') plt.title('Real-Time Adjusted Magnetic Field') plt.legend() plt.grid(True) plt.subplot(2, 1, 2) plt.plot(adjusted_acoustic_pressure, label='Adjusted Acoustic Pressure') plt.xlabel('Time Step') plt.ylabel('Acoustic Pressure (Pa)') plt.title('Real-Time Adjusted Acoustic Pressure') plt.legend() plt.grid(True) plt.tight_layout() plt.show()
Explanation
This code uses a PID controller to adjust the magnetic and acoustic fields in real-time based on sensor input. The adjusted fields are plotted over time to visualize the control system's effectiveness.
``` ### **LaTeX Code for Equations and Explanations (Blogger-Compatible)** ```latex \documentclass{article} \usepackage{amsmath} \usepackage{graphicx} \begin{document} \section*{Magnetic Field Simulation using FEA} This simulation calculates the magnetic field distribution using the Biot-Savart law. The magnetic field \( B \) is generated by current flowing through a material, defined by: \[ B =
Comments
Post a Comment